Earth's Motions

What evidence do we have to provide evidence of Earth's motions and how do calculate its elliptical orbit?

Earth's Motions

- Rotation - the movement of an object in a circular motion around a line of axis
- Period of Rotation - amount of time to make one complete rotation
- Example: Earth rotates 360° in 24 hours

Earth's Rotation

Earth's Motions

- Earth's axis of rotation is tilted 23.5°

Earth's Motions

Evidence of Rotation

- Foucault Pendulum - large pendulum that when allowed to swing freely changes its path due to Earth's rotation

Foucault Pendulum

Earth's Motions

Evidence of Rotation

- Coriolis Effect - the tendency of all particles on Earth's surface to be deflected from a straight line
- N. Hemisphere to the right
- S. Hemisphere to the left

Coriolis Effect

Coriolis Effect in the Southern Hemisphere

Hurricanes in the Northern Hemisphere

Earth's Motions

- Revolution - the motion of one body around another in an orbit
- Period of Revolution - the amount of time required to orbit the Sun one time
- Example: Earth orbits the Sun in 365.25 days

Earth's Revolution

Earth's Motions

Evidence of Revolution

- Parallelism of Earth's Axis - Earth's tilted axis of 23.5° is always pointed to the same location in the sky giving us our different seasons

Earth's Motions

Evidence of Revolution

Earth's Motions

- Winter Solstice - first day of winter [N. Hemisphere] when the Earth leans away from the Sun
- Approximate Date: December 21
- Summer Solstice - first day of summer [N. Hemisphere] when the Earth leans towards the Sun
- Approximate Date: June 21

Earth's Motions

- Vernal Equinox - first day of spring [N. Hemisphere] when there are equal amounts of day and night
- Approximate Date: March 21
- Autumnal Equinox - first day of fall [N. Hemisphere] when there are equal amounts of day and night
- Approximate Date: September 21

Earth's Motions

- Ellipse - the oval shape of a planet's orbits
- Perihelion - the point in the orbit of Earth at which it is closest to the sun
- Distance: 147,000,000 km
- Aphelion - the point in the orbit of Earth at which it is farthest from the sun
- Distance: I52,000,000 km

Earth's Motions

Parts of an Ellipse

- Eccentricity - the degree of "ovalness" of an ellipse
- Eccentricity of a perfect circle is 0
- Eccentricity of a flat line is I
- Foci - two fixed center points of an ellipse
- Major Axis - the longest straight line distance across an ellipse

Earth's Motions

Earth's Motions

Calculate Eccentricity

- Use the formula from the E.S.R.T

$$
\text { eccentricity }=\frac{\text { distance between foci }}{\text { length of major axis }}
$$

Earth's Motions

Calculate the eccentricity
eccentricity $=\frac{\text { distance between foci }}{\text { length }}$

Earth's Motions

Celestial Object	Mean Distance from Sun (million km)	$\begin{gathered} \text { Period of } \\ \text { Revolution } \\ \text { (}=\text { days) }(y=\text { years }) \end{gathered}$	Period of Rotation at Equator	Eccentricity of Orbit	Equatorial Diameter (km)	$\begin{aligned} & \text { Mass } \\ & (\text { Earth }=1) \end{aligned}$	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
SUN	-	-	27 d	-	1,392,000	333,000.00	1.4
MERCURY	57.9	88 d	59 d	0.206	4,879	0.06	5.4
VENUS	108.2	224.7 d	243 d	0.007	12,104	0.82	5.2
EARTH	149.6	365.26 d	23 h 56 min 4 s	0.017	12,756	1.00	5.5
MARS	227.9	687 d	24 h 37 min 23 s	0.093	6,794	0.11	3.9
JUPITER	778.4	11.9 y	9 h 50 min 30 s	0.048	142,984	317.83	1.3
SATURN	1,426.7	29.5 y	10 h 14 min	0.054	120,536	95.16	0.7
URANUS	2,871.0	84.0 y	17 h 14 min	0.047	51,118	14.54	1.3
NEPTUNE	4,498.3	164.8 y	16 h	0.009	49,528	17.15	1.8
EARTH'S MOON	149.6 (0.386 from Earth)	27.3 d	27.3 d	0.055	3,476	0.01	3.3

