What evidence do we have to provide evidence of Earth's motions and how do calculate its elliptical orbit?

- <u>Rotation</u> the movement of an object in a circular motion around a line of axis
- <u>Period of Rotation</u> amount of time to make one complete rotation

• Example: Earth rotates 360° in 24 hours

• Earth's axis of rotation is tilted 23.5°

Evidence of Rotation

• <u>Foucault Pendulum</u> - large pendulum that when allowed to swing freely changes its path due to Earth's rotation

Foucault Pendulum

Evidence of Rotation

- <u>Coriolis Effect</u> the tendency of all particles on Earth's surface to be deflected from a straight line
 - N. Hemisphere to the right
 - S. Hemisphere to the left

Coriolis Effect in the Northern Hemisphere

Coriolis Effect in the Southern Hemisphere

Hurricanes in the Northern Hemisphere

- <u>Revolution</u> the motion of one body around another in an orbit
- <u>Period of Revolution</u> the amount of time required to orbit the Sun one time

• Example: Earth orbits the Sun in 365.25 days

Earth's Revolution

Evidence of Revolution

 <u>Parallelism of Earth's Axis</u> - Earth's tilted axis of 23.5° is always pointed to the same location in the sky giving us our different seasons

Evidence of Revolution

- <u>Winter Solstice</u> first day of winter [N. Hemisphere] when the Earth leans away from the Sun
 - Approximate Date: December 21
- <u>Summer Solstice</u> first day of summer [N. Hemisphere] when the Earth leans towards the Sun
 - Approximate Date: June 21

- <u>Vernal Equinox</u> first day of spring [N. Hemisphere] when there are equal amounts of day and night
 - Approximate Date: March 21
- <u>Autumnal Equinox</u> first day of fall [N. Hemisphere] when there are equal amounts of day and night
 - Approximate Date: September 21

- Ellipse the oval shape of a planet's orbits
- <u>Perihelion</u> the point in the orbit of Earth at which it is closest to the sun
 - Distance: 147,000,000 km
- Aphelion the point in the orbit of Earth at which it is farthest from the sun
 - Distance: 152,000,000 km

Parts of an Ellipse

- Eccentricity the degree of "ovalness" of an ellipse
 - Eccentricity of a perfect circle is 0
 - Eccentricity of a flat line is I
- Foci two fixed center points of an ellipse
- <u>Major Axis</u> the longest straight line distance across an ellipse

Calculate Eccentricity

• Use the formula from the E.S.R.T

eccentricity = distance between foci length of major axis

Calculate the eccentricity

eccentricity = distance between foci length of major axis

Celestial Object	Mean Distance from Sun (million km)	Period of Revolution (d=days) (y=years)	Period of Rotation at Equator	Eccentricity of Orbit	Equatorial Diameter (km)	Mass (Earth = 1)	Density (g/cm ³)
SUN	_	_	27 d	_	1,392,000	333,000.00	1.4
MERCURY	57.9	88 d	59 d	0.206	4,879	0.06	5.4
VENUS	108.2	224.7 d	243 d	0.007	12,104	0.82	5.2
EARTH	149.6	365.26 d	23 h 56 min 4 s	0.017	12,756	1.00	5.5
MARS	227.9	687 d	24 h 37 min 23 s	0.093	6,794	0.11	3.9
JUPITER	778.4	11.9 y	9 h 50 min 30 s	0.048	142,984	317.83	1.3
SATURN	1,426.7	29.5 y	10 h 14 min	0.054	120,536	95.16	0.7
URANUS	2,871.0	84.0 y	17 h 14 min	0.047	51,118	14.54	1.3
NEPTUNE	4,498.3	164.8 y	16 h	0.009	49,528	17.15	1.8
EARTH'S MOON	149.6 (0.386 from Earth)	27.3 d	27.3 d	0.055	3,476	0.01	3.3